彭新湘
|
学习经历
1987.03-1989.12: 437必赢会员中心植物生理学学习攻取理学博士学位。
1983.09-1986.07: 437必赢会员中心植物生理学专业学习攻取理学硕士学位;
1979.09-1983.07: 湖南农学院茶学专业学习攻取农学学士学位;
工作经历
1989.12—至今:437必赢会员中心工作,分别于1990、1993、1997年晋升为助研、副研、研究员;曾任437必赢会员中心院长,437必赢会员中心研究生院常务副院长,437必赢会员中心发展规划处处长,现任437必赢会员中心农学院执行院长。
1983.08—1987.03:湖南师范大学生物系助教;
期间国外研究经历:
2007.08—2008.02:美国康奈尔大学高访;
2001.11—2002.02: 美国旧金山州立大学高访;
1995.09—1996.09: 菲律宾国际水稻研究所博士后;
1991.09—1993.12: 菲律宾国际水稻研究所博士后;
研究领域: 植物高光效及抗逆性机理
1. 植物高光效机理及分子改良:深入解析C3植物光合/光呼吸分子调控机理,充分利用合成生物学、基因编辑、代谢工程等现代研究技术,重构光合/光呼吸代谢通路,在C3植物中创建新型光合CO2浓缩机制,以期提高作物光合效率、产量及抗逆性。
2. 植物活性氧(ROS)信号调控分子机理:光合/光呼吸与ROS产生及其信号转导密切相关。C3植物中70%的H2O2源于光呼吸代谢,当植物遭遇干旱、高温、高光等逆境时其占比更高。我们发现光呼吸关键酶乙醇酸氧化酶(GLO)与过氧化氢酶(CAT)的动态互作/解离可作为调控H2O2波的一个分子开关(简称GC开关),这种基于代谢通道原理(metabolic channeling)的物理学发生机制尚属首次报道。目前正致力于深入解析GC开关调控的分子机理及其功能,以期为作物抗逆性分子改良提供理论与技术指导。
3. 植物草酸代谢调控分子机理:已有大量研究表明草酸在植物抗金属毒害、耐低磷等过程中起重要作用,但在可食性植物中含量过高会对人与动物产生毒害,因此阐明植物草酸代谢调控分子机理是合理有效控制草酸积累的前提。通过多年的研究探索,业已明确草酸代谢与光呼吸乙醇酸/乙醛酸代谢和硝同化紧密关联,目前正致力于进一步解析其代谢通路和分离克隆其代谢调控的关键基因,旨在最终实现合理有效调控草酸代谢以提高植物抗逆性的目标。
近年主持课题
1.国家重点研发计划子课题子项目“植物高光效回路的设计与系统优化—新型高效固碳回路的设计与优化” (2020YFA0907600,2020.11-2025.10,190万元)
2.广东省基础与应用基础研究重大项目(子任务)“水稻高产优质关键性状的分子机理解析及种质创新” (2019B030302006,2020.01-2024.12,358万元)
3.国家基金“光呼吸GLO与CAT互作/解离调控机理及其与植物抗逆性的关系研究” (31770256,2018.01-2021.12,60万元)
4.广州市科技计划重点项目“植物光呼吸调控机理及其与抗逆性的关系研究”(201607020006,2016.5-2019.5,165万元)
5.国家基金“水稻光合CO2浓缩机制的创建及其对光合效率的影响研究”(31470343,2015.01-2018.12,85万元)
6.国家-广东联合基金“水稻抗光氧化胁迫基因的挖掘及分子机理研究”(U1201212,2013.1-2016.12,80万元)
7.国家基金“OsNOA1调控叶绿素和Rubisco形成及其温度依赖性的机理研究” (31170222,2012.1-2015.12,60万元)
8.广东省自然科学基金重点项目“多基因转化改造光呼吸代谢途径提高水稻耐热抗旱性研究”(10251064201000005, 2011.1-2013.12,20万元)
9.国家基金“水稻草酸合成与调控的分子机理”(30971710,2010.1-2012.12,27万元)
10.国家基金“GLO调控水稻光合作用的机理”(30870184,2009.1-2011.12,38万元)
近年发表论文(* 表示通讯作者)
(1) Li XY, Chen LR, Zeng XY, Wu KX, Huang JY, Liao MM, Xi Y, Zhu GH, Zeng XY, Hou XW, Zhang ZS*, Peng XX*. Wounding induces a peroxisomal H2O2 decrease via glycolate oxidase-catalase switch dependent on glutamate receptor-like channel-supported Ca2+ signaling in plants. The Plant Journal, 2023, doi: 10.1111/tpj.16427. (IF2022 7.2)
(2) Xu Z, Guo WD, Mo BQ, Pan Q, Lu JT, Wang ZW, Peng XX*, Zhang ZS*. Mitogen-Activated Protein Kinase 2 specifically regulates photorespiration in rice. Plant Physiology, 2023, 00: 1-14. (IF2022 7.4)
(3) Li XY, Liao MM, Huang JY, Chen LR, Huang HY, Wu KX, Pan Q, Zhang ZS*, Peng XX*. Dynamic and fluctuating generation of hydrogen peroxide via photorespiratory metabolic channeling in plants. The Plant Journal 2022, 112: 1429-1446. (IF2022 7.2)
(4) Zhang CL, Zhong XF, Lin DG, Wu KX, Wu Z, Zhang ZS, Peng XX*. Grain Quality Affected by Introducing Photorespiratory Bypasses into Rice. Agronomy 2022, 12: 566 (IF2022 3.7)
(5) Liu JY, He ZD, Leung DWM, Zeng SS, Cui LL, Peng XX*. Molecular, biochemical and enzymatic characterization of photorespiratory 2-phosphoglycolate phosphatase (PGLP1) in rice. Plant Biology 2022, 24: 510-516 (IF2021 3.877)
(6) Cui LL, Zhang CL, Li ZC, Xian T, Wang LM, Zhang ZS, Zhu GH*, Peng XX*. Two chloroplastic PLGG1 isoforms function together to transport photorespiratory glycolate and glycerate in rice. Journal of Experimental Botany 2021, erab020. (IF2021 7.298)
(7) Wang LM, Shen BR, Li BD, Zhang CL, Lin M, Tong PP, Cui LL, Zhang ZS, Peng XX*. A Synthetic Photorespiratory Shortcut Enhances Photosynthesis to Boost Biomass and Grain Yield in Rice. Molecular Plant, 2020, 13:1802-1815. (IF2020 13.164)
(8) Zhang ZS, Liang XY, Lu L, Xu Z, Huang JY, He H, Peng XX*. Two glyoxylate reductase isoforms are functionally redundant but required under high photorespiration conditions in rice. BMC Plant Biology, 2020, 20:357. (IF2020 4.215)
(9) Shen BR, Wang LM, Lin XL, Yao Z, Xu HW, Zhu CH, Teng HY, Cui LL, Liu EE, Zhang JJ, He ZH*, Peng XX*. Engineering a new chloroplastic photorespiratory bypass to increase photosynthetic efficiency and productivity in rice. Molecular Plant, 2019, 12: 199-214. (IF2019 12.084)
(10) Liu J, Cui LL, Xie ZW, Zhang ZZ, Liu EE, Peng XX*. Two NCA1 isoforms interact with catalase in a mutually exclusive manner to redundantly regulate its activity in rice. BMC Plant Biology, 2019, 19:105. (IF2019 3.497)
(11) Teng HY, Shen BR, Peng XX*. Responsiveness comparison of three stress inducible promoters in transgenic rice. Acta Physiol Plant, 2018, 40: 179. (IF2017 1.439)
(12) He H, Yang QS, Shen BR, Zhang S, Peng XX*. OsNOA1 functions in a threshold-dependent manner to regulate chloroplast proteins in rice at lower temperatures. BMC Plant Biology, 2018, 18:44. (IF2017 3.930)
(13) Zhang ZS, Li XY, Cui LL, Meng S, Ye NH and Peng XX*. Catalytic and functional aspects of different isozymes of glycolate oxidase in rice. BMC Plant Biology, 2017, 17: 135 (IF2017 3.930)
(14) Shen BR, Zhu CH, Yao Z, Cui LL, Zhang JJ, Yang CW, He ZH, Peng XX*. An optimized transit peptide for effective targeting of diverse foreign proteins into chloroplasts in rice. Scientific Report, 2017, 7: 46231 (IF2016 4.259)
(15) Peng C, Liang X, Liu EE, Zhang JJ, Peng XX*. The oxalyl-CoA synthetase-regulated oxalate and its distinct effects on resistance to bacterial blight and aluminium toxicity in rice. Plant Biology, 2017, 19(3): 345-353 (IF2016 2.106)
(16) 张智胜和彭新湘*. 光呼吸的功能及其平衡调控. 植物生理学报, 2016, 52(11): 1692-1702
(17) Cui LL, Lu YS, Li Y, Yang CW and Peng XX*. Overexpression of Glycolate oxidase confers improved photosynthesis under high light and high temperature in rice. Front Plant Sci, 2016, 7: 1165. (IF2016 4.298)
(18) Zhang ZS, Xu YY, Xie ZW, Li XY, He ZH, Peng XX*. Association-dissociation of glycolate oxidase with catalase in rice: a potential switch to modulate H2O2. Molecular Plant, 2016, 9: 737-748 (IF2016 8.827)
(19) Zhang ZS, Mao XX, Ou JY, Ye NH, Zhang JH, Peng XX*. Distinct photorespiratory reactions are preferentially catalyzed by glutamate:glyoxylate and serine:glyoxylate aminotransferases in rice. J Photochem Photobiol B, 2015: 142: 110-7 (IF2015 3.035)
(20) Ye NH, Yang GZ, Chen Y, Zhang C, Zhang JH, Peng XX*. Two hydroxypyruvate reductases encoded by OsHPR1 and OsHPR2 are involved in photorespiratory metabolism in rice. J Integr. Plant Biol, 2014, 52(2): 170-180 (IF2014 3.335)
(21) Lu YS, Li Y, Yang QS, Zhang ZS, Chen Y, Zhang S and Peng XX*. Suppression of glycolate oxidase causes glyoxylate accumulation that inhibits photosynthesis through deactivating Rubisco in rice. Physiol Plant, 2014, 150 ( 3 ):463 - 476 (IF2014 3.133)
(22) Zhang ZS, Lu YS, Zhai LG, Deng RS, Jiang JJ, Li Y, He ZH, Peng XX*. Glycolate oxidase isozymes are coordinately controlled by GLO1 and GLO4 in rice. PLoS ONE, 2012, 7(6): e39658 (IF2012 3.702)
(23) Yang QS, He H, Li H, Tian H, Zhang JJ, Zhai LG, Chen J, Wu H, Yi GJ, He ZH, Peng XX*. NOA1 functions in a temperature-dependent manner to regulate chlorophyll biosynthesis and Rubisco formation in rice. PLoS ONE, 2011; 6(5): e20015 (IF2011 4.441)
(24) Zhang JJ, Yin YY, Wang YQ, Peng XX*. Identification of rice Al-responsive genes by semi-quantitative polymerase chain reaction using sulfite reductase as a novel endogenous control. J Integr Plant Biol, 2010, 52: 505-514(IF2010 1.603)
(25) 胥华伟,姜敬哲,彭新湘*. 光呼吸突变体研究进展. 植物学报. 2010, 45: 393-403
(26) Yu L, Jiang J, Zhang C, Jiang LR, Ye NH, Lu YS, Yang GZ, Liu EE, Peng CL, He ZH, Peng XX*. 2010. Glyoxylate rather than ascorbate is an efficient precursor for oxalate biosynthesis in rice. J Exp Bot, 2010, 61: 1625-1634 (IF2010 4.818)
(27) Xu HW, Zhang JJ, Zeng J, Jiang LR, Liu EE, Peng CL, He ZH, Peng XX*. Inducible antisense suppression of glycolate oxidase reveals its strong regulation over photosynthesis in rice. J Exp Bot, 2009, 60: 1799-1809 (IF2009 4.274)